Peptide binding at class I major histocompatibility complex scored with linear functions and support vector machines.

نویسندگان

  • Henning Riedesel
  • Björn Kolbeck
  • Oliver Schmetzer
  • Ernst-Walter Knapp
چکیده

We explore two different methods to predict the binding ability of nonapeptides at the class I major histocompatibility complex using a general linear scoring function that defines a separating hyperplane in the feature space of sequences. In absence of suitable data on non-binding nonapeptides we generated sequences randomly from a selected set of proteins from the protein data bank. The parameters of the scoring function were determined by a generalized least square optimization (LSM) and alternatively by the support vector machine (SVM). With the generalized LSM impaired data for learning with a small set of binding peptides and a large set of non-binding peptides can be treated in a balanced way rendering LSM more successful than SVM, while for symmetric data sets SVM has a slight advantage compared to LSM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Major Histocompatibility Complex (MHC) Structure and Peptide Loading into an MHC Binding Pocket with Teachers’Hands

Molecular understanding of three-dimensional (3D) peptide: MHC models require both basic knowledge of computational modeling and skilled visual perception, which are not possessed by all students. The present model aims to simulate MHC molecular structure with the hands and make a profound impression on the students.

متن کامل

Structural bioinformatics High-order neural networks and kernel methods for peptide-MHC binding prediction

Motivation: Effective computational methods for peptide-protein binding prediction can greatly help clinical peptide vaccine search and design. However, previous computational methods fail to capture key nonlinear high-order dependencies between different amino acid positions. As a result, they often produce low-quality rankings of strong binding peptides. To solve this problem, we propose nonl...

متن کامل

High-order neural networks and kernel methods for peptide-MHC binding prediction

MOTIVATION Effective computational methods for peptide-protein binding prediction can greatly help clinical peptide vaccine search and design. However, previous computational methods fail to capture key nonlinear high-order dependencies between different amino acid positions. As a result, they often produce low-quality rankings of strong binding peptides. To solve this problem, we propose nonli...

متن کامل

Prediction of supertype-specific HLA class I binding peptides using support vector machines.

Experimental approaches for identifying T-cell epitopes are time-consuming, costly and not applicable to the large scale screening. Computer modeling methods can help to minimize the number of experiments required, enable a systematic scanning for candidate major histocompatibility complex (MHC) binding peptides and thus speed up vaccine development. We developed a prediction system based on a ...

متن کامل

POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties

MOTIVATION Both modeling of antigen-processing pathway including major histocompatibility complex (MHC) binding and immunogenicity prediction of those MHC-binding peptides are essential to develop a computer-aided system of peptide-based vaccine design that is one goal of immunoinformatics. Numerous studies have dealt with modeling the immunogenic pathway but not the intractable problem of immu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome informatics. International Conference on Genome Informatics

دوره 15 1  شماره 

صفحات  -

تاریخ انتشار 2004